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Abstract

We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard
reflection law from the “least action principle”, and extend the basic properties of Riemannian and
Euclidean billiards to the Finsler and Minkowski settings, respectively. We prove that the Finsler
billiard map is a symplectomorphism, and compute the mean free path of the Finsler billiard ball. For
the planar Minkowski billiard we obtain the mirror equation, and extend the Mather’s non-existence
of caustics result. We establish an orbit-to-orbit duality for Minkowski billiards. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The geodesic flow of a Riemannian manifold provides a natural link between dynamics
and geometry. From our viewpoint, the billiard flow is the geodesic flow on a Rieman-
nian manifold with a boundary. In order to include important physical examples (e.g., the
Boltzmann-Sinai gas), we need to allow singularities on the boundary. Thus, in a more
general interpretation, billiard flows are the geodesic flows on Riemannian manifolds with
corners.
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Finsler geometry originated in the famous lecture of Riemalesereinige Hypothesen
die der Geometrie zu Grunde liegemit was in limbo for a long time, before gaining
acceptance as a full-fledged subject. Nowadays, Finsler geometry is a very active field of
research [5,8,12,13,34]. Besides being a natural generalization of Riemannian geometry,
Finsler geometry has numerous applications in mathematics and physics. An example from
analysis is the Teichmuller spaces endowed with the Teichmuller metric — see [26,41].
Another example is Hofer’'s metric of on the group of symplectomorphisms of a symplectic
manifold [23,29].

Fromthe point of view of the geometric optics, Finsler geometry describes the propagation
of waves in a medium which is both anisotropic and inhomogeneous. Riemannian geometry,
on the other hand, corresponds to the wave propagation in a medium, which although
may be inhomogeneous, is isotropic. The Finsler geodesic flow has the same relation to
Finsler geometry as the standard geodesic flow to Riemannian geometry. The dynamic
and the geometric aspects of the Finsler geodesic flow continue to be actively researched
[16,17].

In the present work we begin the study of Finsler billiards. They have the same relation to
the Finsler geodesic flows as the conventional billiards to the (Riemannian) geodesic flows.
Another way of putting it is that the Finsler billiard is the Finsler geodesic flow on a Finsler
manifold with a boundary, and, more generally, on a Finsler manifold with corners. From
the geometric optics point of view, the Finsler billiard describes the wave propagation in
a medium, which is not only inhomogeneous and anisotropic, but also contains perfectly
reflecting mirrors.

The first step in the study of Finsler billiards is the definition of the reflection law. The
well-known Riemannian reflection law is local: the angle of reflection is equal to the an-
gle of incidence. The absence of angles in Finsler geometry means that this definition
has to be modified. On the other hand, the local reflection law above follows from the
global principle — the “least action principle”. More precisely, in Riemannian geometry
a billiard orbit between a pair of points of the “billiard table” extremizes the Rieman-
nian length in the space of all paths joining the points in question, via a reflection off
of the table boundary. Likewise, the local reflection law of the Finsler billiard should be
uniquely determined by the least action principle. Now the action is the Finsler length of a
path.

We deduce the Finsler billiard reflection law from the “least action principle”. Itis just as
basic as its special case — the Riemannian reflection law. Instead of the angles of incidence
and reflection, which have no intrinsic meaning in the Finsler geometry, this reflection law
involves the geometry of the unit sphere in the tangent space — the indicatrix. We also
give a dual formulation of the Finsler reflection law in terms of the figuratrix — the unit
sphere in the cotangent space. Note that in the Riemannian geometry the indicatrix and
the figuratrix are naturally identified via the Euclidean metric in the tangent spaces. The
Legendre transfornextends this identification to the Finsler geometry.

The best known case of the Riemannian billiards is the Euclidean billiard: the billiard
table is a domain in the Euclidean space dimensions. However, extensive investigations
have been done only for the planar Euclidean billiard. For this model dynamical system
there are beautiful theorems and tantalizing open questions [36]. The Finsler counterpart of
the Euclidean space is the Minkowski space [38]. In much of the paper we specialize to the
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billiards in Minkowski geometry. In particular, we extend a few basic theorems on planar
Euclidean billiards to the planar Minkowski billiards.

Let us now describe the contents of the paper in more detail. In Section 2 we briefly
recall the basic notions of the Finsler geometry, referring the reader to the literature for
more information. In Section 3 we deduce the Finsler billiard reflection law from the “least
action principle”. We give two equivalent formulations of the Finsler reflection law: in terms
of theindicatrix (Lemma 3.3) and in terms of tHeguratrix (Corollary 3.2). In the rest of
this section we extend the Euclidean “string construction” (also known as the “gardener’s
construction”) to planar Minkowski billiards. See Lemma 3.6.

In Section 4 we establish the basic facts about the Finsler billiard ball map. In particular,
we give two proofs that the map preserves the natural symplectic form. See Theorem
4.3, Proposition 4.7, and Remark 4.8. As an immediate application of our technique, we
compute the mean free path of the Finsler billiard ball. Our general equation (3) reduces to
the classical mean free path formula when the metric is Riemannian. See Corollary 4.10.
For the planar billiard the Minkowski and the Euclidean mean free path formulas essentially
coincide. Compare Egs. (5) and (7).

In Section 5 we illustrate the similarities and the differences between the Euclidean and the
Minkowski billiards by three simple examples. The examples are elementary and involve the
billiards in polygons. However, they reflect important themes in billiard dynamics: periodic
orbits, connections with mechanics, and control of the frequency of collisions.

In Section 6 we specialize to the planar Minkowski billiard dynamics. We study the
differential of the billiard map, and extend the famous Euclidedmor equationof the
geometric optics. See Proposition 6.1. As an application of the Minkowski mirror equa-
tion, we prove the Minkowski version of the Mather theorem. It says that convex bil-
liard tables whose Minkowski curvature is not strictly positive do not have caustics. See
Theorem 6.4.

In Section 7 we investigate a useful duality between Minkowski billiards in arbitrary
dimensions. This duality allows to trade the shape of the billiard table with the metric that
determines the reflection law. This phenomenon, which is peculiar to Minkowski geometry,
has a continuous version, corresponding to the geodesic flows on Minkowski hypersurfaces.

2. Finder geometry

We start with a very brief introduction to Finsler geometry (see, e.g. [2,3,5,7,8,12,13,
34,38]). There are two equivalent points of view corresponding to the Lagrangian and the
Hamiltonian approaches in classical mechanics.

A Finsler metric on a manifold/ is described by a smooth field of strictly convex, cen-
trally symmetric hypersurfaces. Throughout the paper we assume that these hypersurfaces
are quadratically convex (see, e.g. [3, Definition 2.1]). Each hypersurface belongs to the
tangent space at a point. They are caltedicatrices The indicatrix consists of the Finsler
unit vectors and plays the role of the unit sphere in Riemannian geometry.

Equivalently, a Finsler metric is determined by a smooth non-negative fiberwise convex
Lagrangian functiord. (-) on the tangent bundlEM. The restriction of_ to a tangent space
T, M gives the Finsler length of vectors ik M. On each spac&, M the Lagrangian.
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is positive and homogeneous of degree 1. In other wdtds, -) is a Banach norm in the
spacel, M.
Given a smooth curve : [a, ] — M, its length is given by

b
L) =/ L(y(t), y'(t)) dt.

a

The integral does not depend on the parameterization. A Finsler geodesic is an extremal of
the functionall. The Finsler geodesic flow is a flow M where the foot point of a vector
in TM moves along the Finsler geodesic tangent to it, so that the vector remains tangent to
this geodesic and preserves its norm.

Let I, C T, M be the indicatrix. The figuratri¥, C T, M in the cotangent space is
defined as follows. For € I, consider the covectgs € T,M determined by Kep =
T,I, andp(u) = 1. The ma, : I, — T;M istheLegendre transforran the Minkowski
spaceT, M, and the figuratrix is the range of this map. Alternatively, the figuratrix is the
unit sphere of the dual normed spatgM. We will also call J, the unit cosphere at
x € M. The dual Legendre transfor® : J, — T M is defined likewise. LetM C TM
(resp.JM C T*M) be the union ofl,M,x € M (resp.JyM,x € M). ThenIM (resp.
JM) is the Finsler unit sphere (resp. cosphere) bundi® of/aryingx € M, we obtain the
global Legendre transforni3 : IM — JMandD* : JM — IM. The two transforms satisfy
D*D = DD* = 1.

The same way as the bundlel and the Lagrangian functioh on TM correspond
to one another, the field of figuratricd®1 determines the Hamiltonian functiod on
T*M. The flow of the Hamiltonian vector field sgrafion the symplectic manifold™* M
is also called the Finsler geodesic flow. The Legendre transform identifies the two
flows.

The canonical symplectic forif® on T*M is exact:£2 = di wherex is the Liouville
form onT*M. The restriction of. to M is a contact formi A (dr)"~1 £ 0 everywhere
onJM. The Hamiltonian vector field sgrad is the Reeb field,

We will use a form of the Huygens principle of wave propagation Edie a propagating
wave front, whereis the time variable. Fixand consider a Finsler unit covecigrconormal
to F;. Let p evolve under the Finsler geodesic flow for a small ténd@hen the covector
pe is conormal to the fronf; ..

Let M be a domain in a linear or a projective space. A Finsler metridfois called
projectiveif the geodesics are straight lines (segments). For example, a Minkowski metric
on alinear space is projective. Another example is the Klein model of hyperbolic geometry.
Still another example is thidilbert metricinside a convex domain in the projective space
— see [12]. By Hamel's theorem, the Finsler metric given by a Lagrangi@nu) is
projective if and only if the matrixy, is symmetric — see [1].

Throughout the paper we will assume that our Finsler maniMldhas no conjugate
points. Most of the time we will also assume tiAétis geodesically convex: any two points
are connected by a geodesic segment.
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3. Réeflection law

Our definition of the reflection law for Finsler billiards is based on the variational ap-
proach: a billiard trajectory is a geodesic on a Finsler manifold with a boundary. More
precisely, letM be a Finsler manifold with boundagM = N. We will often refer toM
as abilliard table. Letax andxb be two geodesic segments, where the paintse M are
in the interior of the billiard table, and € N is on the boundary. We say that the geodesic
ray xbis the billiard reflection of the geodesic rayif x is a critical point of the distance
function F (y) = dist(ay) + dist(yb).

Let I = I, be the indicatrix atkc € N, and letu, v € I be the Finsler unit vectors
along the geodesic segmemtsandxb, respectively. By definition, the billiard reflection
is a transformatiorR : I — I such thatR(u) = v. Clearly, R is the identity map on
the intersection of with the hyperplang’, N and R(—v) = —u. We will describe this
transformation geometrically.

Fix a pointo € M, and consider the wave propagation from the ceotdret ¢ be a
non-singular point of the wave frotf;, such that the geodesic segmentof lengthzg is
contained in the interior oM. The Finsler length of the segment extends to a smooth
distance functiord(-) in a neighborhood aof. More precisely, for every point, sufficiently
close toc, there exists a, close torg, such thatt € F,. We set:L(x) = ¢. Let] andJ
be the indicatrix and the figuratrix at and letD : I — J be the Legendre transform.
Denote byu € I the Finsler unit vector alongc. We denote by ¢ the differential of a
function f.

Lemma3.1. Atthe point c we havelL = D(u).

Proof. We will use the Huygens principle, as described in Section 2. The wavefignt
is a level set of the Lagrangian functidh Hence d. annihilates the tangent plane to
Fi,- By Huygens principleD(u) is a covector, conormal to this plane. Therefdré)
is proportional to d.. It also follows from the Huygens principle that.@:) = 1. By
definition of the Legendre transformD(u) - (u) = 1 as well; therefore d =
D(u). O

Lemma 3.1 yields the Finsler billiard reflection law.

Corollary 3.2. The covectoD(v) — D(u) is conormal to the hyperplanE, N.

Proof. Since pointx € N is a point of relative extremum of the function disx) +
dist(xb), the differential of this function annihilates the tangent hyperpféamé. According
to Lemma 3.1, the differential is equal Ixv) — D(u). O

Now we describe the Finsler billiard reflection law in terms of the indicatrix.

Lemma 3.3. If the affine hyperplane$, I, T,I, TN C T, M are not parallel, then their
intersection is a subspace of codimension.two
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Fig. 1. Finsler billiard reflection law.

Proof. Let p be a Finsler unit covector, conormalToN. If D(v) — D(u) is proportional
to p then the covector®(v), D(u) andp are linearly dependent and span a space of atmost
two dimensions. Then either codif®, I NT,INT,N) = 2orT,I, T,I andT, N are parallel.
Conversely, ifT,, I, T, I andT, N are parallel, theD (1) and D (v) are proportional tg,
hence both are conormal I N. Suppose that codicd,/ N T, N T,N) = 2. Then for
everyé € T, I we haveD (u) (&) = 1. Likewise,D(v)(n) = 1 for everyn € T, 1. Therefore
(D(w) — D(u))() =O0foreverys e T,INT,I =T,I NT,I NT,N. This affine subspace
spans the tangent hyperplafieN, thereforeD (v) — D(u) is conormal tofy N. O

Remark 3.4. Note that the intersection of three hyperplanes in general position has codi-
mension three.

Fig. 1 illustrates Lemma 3.3 in two dimensions. In the Riemannian case the indicatrix
is a circle, and Lemma 3.3 yields that the unit vectoendv make equal angles with the
tangent line to the boundary of the billiard table.

Example3.5. Let a billiard table be a ball in a Finsler manifold. Then the center of the ball
enjoys the same property as in the Euclidean case: a billiard trajectory passing through the
center, reflects back to the center. For two paints € M, we consider the locus of points

x such that distxa) + dist(bx) is constant. Generically, this is a smooth hypersurface. A
Finsler geodesic starting atreflects in this hypersurface to a geodesic passing thréugh
This extends the familiar optical property of the Euclidean ellipse.

Let M be a geodesically convex Finsler surface with a boundarmaudsticis a curve,
y, in M that has the following property: if a billiard segment is tangeny tthen so
is the reflected segment. In general, caustics may have singularities. In what follows we
consider only convex caustics. Te&ing constructionillustrated in Fig. 2, shows how
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X

y

Fig. 2. String construction.

to reconstruct the billiard table from a caustic. This construction is well known for planar
Euclidean billiards — see, e.qg. [36].

Setl’ = aM. Lety be a closed convex curve M. Forx € I', let L(x) be the length of
the shortest curve fromto x around the “obstaclej. The lemma below provides a basis
for the string construction.

Lemma 3.6. The curvey is a caustic if and only if.(-) is a constant function

Proof. Choose a point on the “other side” of/, and letL1(x) andL2(x) be the lengths of
the two shortest curves fromto y aroundy . Letu1 andu; be the Finsler unit vectors at
tangent to these two curves. The argument of Lemma 3.1, showstliat= D(u;),i =
1, 2. According to the billiard reflection law from Corollary 3.2(u1) = —u> if and only
if D(u1) + D(u2) = —(dL1 + dL») is conormal tol" at pointx. This is equivalent ta”
being a level curve of the functiob(x) = L1(x) + La(x). O

4. Finder billiard map and invariant symplectic structure

Let M be a billiard table, and le¥ = 9 M. It will be convenient to identify tangent and
cotangent vectors via the Legendre transform.

The (Finsler) billiard map (or the billiard transformation) is the Poincaré return map for
a natural cross-section of the Finsler billiard flow. Consider an oriented geodesic segment
g1g2 in the interior of M with end-points on the boundary and transversal to it at both
end-points. Le{q, u1) and(q2, u}) be the Finsler unit tangent vectors at the end-points
along this geodesic, and set = R(u)), whereR is the billiard reflection ag>. Then the
billiard transformation take&g1, u1) to (g2, u2). The phase space,, of the billiard map,
T, consists of inward oriented tangent vectors (covectors) with foot poiné.on

We will now define a symplectic form o#r. We will adopt the approach of Melrose. See
[30,31] or [6, Chapter 3, Section 2.3], and [7, Appendix 14].
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Let £2 be the canonical symplectic form @t M. Denote byy c T*M the set of tangent
covectors with foot points oV. SetW = Y N JM, and letw be the restriction of2 to W.
Recall that we identifffM andT* M via the Legendre transform. Denote By c W the
subset of vectors that are tangeniMo

Lemma4.1. The formw is non-degenerate oW — X.

Proof. The characteristic foliation of the restriction @fto JM consists of the trajectories
of the geodesic flow. Buv — X is transversal to the leaves. O

We denote byK the characteristic foliation of the restriction @fto Y.

Lemma4.2. Let(q, p) € Y and let n be a covector at g, conormal to N. Then the leaf of
K containing(g, p) consists of covectorg, p + tn), 7 € R.

Proof. We will use the standard notational conventiongz I andn are vectors with the
same number of components, then

no . n1d  nd

dp Adg =dpy Adgy +dpa Adga+ -+, e _ne r2v
dp  dp1  Ip2

In our notation£2 = dp A dg. Consider the linég, p + tn), t € R which lies in the
fiber of the cotangent bundIE* M over the poinly. The vectorf = nd/dp is tangent to
this line. Thenig 2 = ndg, and we will show that this 1-form vanishes &nindeed, the
tangent spacgy, )Y is the direct sum of the “horizontal” subspagV and the “vertical”
subspac@;M. The 1-formn dg vanishes on the latter, anduif € 7, N then(n dg) (w) =
n - w = 0 sincen is a conormal vector t&V. Thusé belongs to the characteristic direction
inY. O

Now we will prove the main result of this section.
Theorem 4.3. The formw on @ is symplectic, and is invariant under the billiard map

Proof. Since® ¢ W—X,Lemmad4.limpliesthefirstclaim. To prove the second claim, we
will use the notation introduced in the beginning of the sectionldiet @ be a sufficiently
small neighborhood ofg1, u1). Denote byt ¢ W (resp.Uy C &) the corresponding
neighborhood of¢1, u’l) (resp.(g2, u2)). ThenT (g1, u1) = (g2, u2) andT (U1) = Uz.
Since the subsetd; andi/ of JM are transversal to the characteristic foliation of the
restriction of$2 to JM, and the intersection with its leaves is a diffeomorphigm;, 241 —

U, we obtain thaf’ is a symplectomorphism.

The same argument, applied to the subgetndis, of Y implies that the natural cor-
respondence betweéhandif, is a symplectomorphism. By Lemma 4.2, this symplecto-
morphism is the Finsler billiard reflection mag. Since T = RT, the claim
follows. O
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Remark 4.4. Let M with the boundaryN be a compact Finsler billiard table. Suppose
that for any pair of points inV there is a unique geodesic segment in(Mj, joining

them. Then the spac®k of oriented geodesic segmentsi is naturally identified with

@. Under this identification, the forrv of Theorem 4.3 coincides with the canonical
symplectic structure on the space of oriented geodesics. The billiard transformation becomes
a symplectomorphism oR.

Remark 4.5. Lemma 4.2 identifies the space of leaves of the characteristic foliaipof,
2|y with T*N. The projectionr : W — ¥ — T*N along the leaves o is a two-to-one
map, and its range is the open unit coball buriifev. Let wg be the canonical symplectic
form on T*N. It follows from Theorem 4.3 and Lemma 4.2 that(wg) = . In the
Riemannian casey, is the orthogonal projection di*N.

Remark 4.6. Let M be a geodesically convex compact Finsler domain of two dimensions.
Then @ is a topological cylinder. The leaves of its “vertical” foliation consist of tangent
vectors with the same foot point. The billiard map satisfies the twist condition, just as in
the Euclidean case (see [24]).

Thereis another approach to the invariant symplectic structure for the billiard map, namely
via agenerating functionSee [24] for the classical case. Lt satisfy the assumptions
of Remark 4.6, except that its dimension can be arbitrary. We identify the phase&pace
with the set of geodesic segmentg?> in the interior ofM, and use the notation developed
in the proof of Theorem 4.3. Lgt1, p; and p2 be the dual covectors ofy, uy anduy,
respectively. Denote bi (g1, g2) the Finsler length of1¢2, and letr be the projection on
T*N — see Remark 4.5.

Proposition 4.7. In the notation above, we have:

9L(q1, g2) dL(q1, q2)
—F—— = —n(p), ——— =n(p2).
aq1 9g2
Proof. If g1, g2 were not constrained, then, by Lemma 39L(q1, g2)/9q1 = —p1,

dL(q1, q2)/3q2 = p2. Taking the constraints into account

0L(q1.92) 0L(q1,92)
———— =-—n(p1), ——— =7n(pp)-
0q1 9g2
But, by Corollary 3.277(p}) = (p2). O

Remark 4.8. Proposition 4.7 provides another proof that the billiard map is symplectic.
As in Remark 4.5, we identifgp with the open unit coball bundI8*N. Proposition 4.7
implies that

7 (p2) dg2 — w(p1) dg1 = dL(q1, ¢2). 1)
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7 (p2) A dgo = d(p1) A dgz. 2

HenceT* (wg) = wo.

To illustrate the usefulness of the preceding formalism, we will obtain a few formulas
relating the Finsler geometry and the billiard statistics. For the Euclidean counterpart of
our results see the classical book [35]. We will compute the mean free path of the Finsler
billiard ball. More precisely, letM” be a Finsler billiard table and I& be its boundary.

The symplectic structure on the phase spaae induces the invariant volume form,

1

vzmw/\.../\a) (n — 1times.

The lengthL (g1, g2) of a segment of a billiard orbit has the physical meaning of the free
path of the ball between consecutive collisions with the boundary. The meanivafukis
function on® is an important physical (and dynamical) characteristic of the billiard ball
problem.

Let ¥ be the phase space of the billiard flowdf Recall that: is the Liouville 1-form
on T*M. SinceV¥ is naturally identified with the hypersurfadd c T*M, the contact
volume form on is given by

1
T (n—1)!

m AADAA---AdL  (n— 1times.

The measureg andv on the phase spac@sand® are invariant under the billiard flow
and the billiard map, respectively. Let y#l) and vol®) be the corresponding volumes.

Proposition 4.9. The mean free path of the Finsler billiard ball is equal to the volume ratio:

- vol(¥)
in=———. 3
Fin VO|(<1§) ( )
Proof. We have the inclusio® C . The space is a cross-section of the Finsler billiard
flow, and the billiard transformation is the Poincaré return map. The invariant volume forms
are related by = isgragn 10~ The claim follows by an application of Fubini’s theorent]

Specializing Eq. (3), we will reproduce some classical formulasM’ebe a Riemannian
manifold with corners, and 1e¢”~1 = 9 M. Denote by valM) and vo[N) the correspond-
ing Riemannian volumes. Let yalB") and vok(S") be the Riemannian volumes of the
Euclidean unit ball and the Euclidean unit sphera-afimensions.

Corollary 4.10. The mean free path for the billiard ball problem in a Riemannian manifold
with corners, of: dimensions, is given by

volg(8"~1) vol(M)

L= )
volg(B"~1) vol(N)

(4)
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Proof. The symplectic and contact volumes in Proposition 4.9 have simple expressions in
terms of the Riemannian volumes:

vol(¥) = volg(S" Hvol(M), vol(®) = volg(B"1vol(N).
Eqg. (3) implies the claim. O

A particularly simple case of Corollary 4.10 is when the billiard table is a planar domain,
2 c R? Then Eq. (4) yields the well-known formula for the mean free pa2 ifsee, e.g.
[35]):

i) = 7 x Area(£2)

" Perimete($2)’ ©)
(£2)

The notion of Euclidean volume has several counterparts in Minkowski geometri Let
be ak-dimensional Finsler manifold. The Holmes—Thompson volumeyM3), is the
symplectic volume of the unit codisk bundle ®fdivided by the volume of the Euclidean
k-dimensional unit ball. See, e.qg. [3, Definition 3.4]. The formula below is proved the same
way as Corollary 4.10, with the Holmes—Thompson volume instead of the Riemannian.

Corollary 4.11. Let M C V be a Minkowski billiard table of n dimensions and let N be
the boundary of M. The mean free path of the Minkowski billiard in M is given by

- vole(S"~ 1) volyT(M)
volg(B"—1) volyT(N)
Let us now specialize to the planar Minkowski billiard$2fis a planar Minkowski domain,
then the Holmes—Thompson volume of its boundary coincides with the Minkowski perime-

ter. We denote it by Perimetgh (£2). Corollary 4.11 yields the Minkowski counterpart of
the formula (5) for the mean free pathgm:

T x AreaqT(£2)

Min (§2) Perimetefin (£2)

(7)

5. Three elementary examples
5.1. Fagnano orbits in Minkowski triangles

Periodic billiard orbits in Euclidean polygons is a fascinating subject, where even the
most basic questions remain open. See [18,27] and the bibliography there. In particular, it
is not known if every Euclidean triangle has a periodic orbit. Every acute triangle does: it
is the so-called Fagnano orbit — see [15] or [19]. This 3-periodic orbit is realized by the
inscribed triangle of the minimal perimeter. Denote the triangular billiard tabla®g.

Then the vertices of the Fagnano trianBi@Rare the base points of the altitudesABC.

Note that the Fagnano orbit degenerates into a singular étGiis a right triangle. In the
parameter space of Euclidean triangles the set of right triangles is the boundary between
the subsets of acute and obtuse triangles.
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A

Fig. 3. Constructing the triangle from a Fagnano trajectory.

We willinvestigate the Fagnano orbitin Minkowski triangles, i.e., triangles in a Minkowski
plane. Let/ be the indicatrix, [elABC be a Minkowski triangle. If the Fagnano triangle,
PQR exists, we say thadBCis anacute Minkowski triangleWe say thaABCis aright
Minkowski triangldf PQRdegenerates into a segment with one of its end-points at a vertex
of ABC, while the other end-point belongs to the interior of the opposite sid8af Denote
by A = A() (resp.R = R(I)) the set of acute (resp. right) Minkowski triangles. [Jet
be the set of all Minkowski triangles.

Proposition 5.1. The geometric construction shown in F&jassociates with any triangle

PQR e T the uniqgue ABCe A such that PQR is the Fagnano orbit in ABRegarding
segments as degenerate triangles, and applying the same construction to them, we obtain
all right Minkowski triangles — see Fid.

Proof. Lemma 3.3 implies the construction of Fig. 3. The first claim followsP®R
degenerates into a segment, we obtain, as a limit of Fig. 3, the construction shown in
Fig. 4. O

Note that if I is a circle, we recover from Figs. 3 and 4 the well-known Euclidean
constructions.
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C

Fig. 4. Triangles with a degenerate Fagnano trajectory.

5.2. Point masses in one dimension

One ofthe most basic physical problems concerns the motion of the gas of one-dimensional
point masses. The particle of massnoving with velocityv contributes%mv2 to the en-
ergy of the system. The gas particles move freely, and interact by perfectly elastic collisions.
Using the standard conservation laws (energy and linear momentum), this physical system
reduces to a Euclidean billiard. In particular, the system of two elastic point masses on the
line (resp. half-line, resp. interval) is isomorphic to the Euclidean billiard in the half-plane
(resp. a wedge, resp. a right triangle) (see [14,21,25,36]).

The main reason that these physical systems reduce to a Euclidean billiard is that the
kinetic energy is quadratic in the velocities. In the example below we investigate the system
of elastic point masses in one dimension, with a non-quadratic dependence of the energy
on the velocities.

For simplicity of exposition, we consider only the case of two particleszizeindm be
the masses. Denote the velocitiestyyanduy. We fix 1. > 1. The corresponding-energy
is

_1 x A
E, = )L(mllull + maluz|”).
The A-momentunis given by

1 _ _
Py =~ (malua "™t + maual* ),
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Proposition 5.2. The system of two perfectly elastic point masses on the line, whose inter-
action preserves the-energy and th&-momentum is isomorphic to the Minkowski billiard
in a half-plane, where the metric is given by

L(v1, v2) = (v} + vi)V*. (8)

Proof. Letxy, x2 be the coordinates of the particles. The configuration space of our system
is the half-plane; < x». The linex; = x2 is the collision locus. Set; = ml/’\xi, i=1 2.

i

These are the new coordinates in the configuration space. The corresponding new velocities
are given by; = mil/ku,-, i =1, 2. The new configuration space is the half-plane

1/ /2

—1/A —
my o oyr=my, " yo2.

The collision locus

—1/x —1/x
my " yr=my Y2

is tangent to the vectar = (mi/k’ m;/k)_
In these coordinates thiemomentum and-energy become

1/A A—1 1/x A—1 A A
Py =m i my Mo By =l + el

Thus the energy is theth power of the Minkowski Lagrangian (8). The Legendre transform
D(v1, v2) = (p1, p2) = pis given byp; = v?il,i = 1, 2. For thec-momentum we have

/ /

1/2 1/2 -
Po=mi"p1+my"p2=p-1.

The motion of the two particles before (resp. after) a collision corresponds to the motion
of the configuration poinf = (y1, y2) with a constant velocity = (v, v2) (resp.v’ =
(v}, v5)). The transformatio® : v — v’ is determined by the conservation laisandP;..
Let p andp’ be the corresponding covectors. The conservatidf,dmplies thatp and p’
have the same Minkowski length, while the conservatioR,afneans thatp — p’) - T = 0.
By Corollary 3.2,R : v — v’ is the Minkowski reflection law. O

5.3. Minkowski billiard in a wedge

A planar wedge is the domain bounded by two intersecting half-lines. The billiard in
a wedge naturally arises in a number of problems, in particular, in polygonal billiards.
The main property of the billiard orbits in a Euclidean wedge is that the total number of
reflections is uniformly bounded. #f is the angle of the wedge, then any billiard orbit in it
makes at mostr /] collisions with the boundary. We will obtain an analog of this property
for Minkowski billiards.

Proposition 5.3. For every Minkowski wedge C there is a uniform upper bound on the
number of bounces of Minkowski billiard orbits in C
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/’ R2

Fig. 5. Minkowski billiard reflections in a wedge.

Proof. LetJ be the figuratrix. Denote by, /> the two sides o€, and letp1, p2 € J be the
inward conormals. Without loss of generality, we assumeghaind p, have the horizontal
and the vertical directions — see Fig. 5.

The billiard reflection®; : J — J,i = 1, 2inthe respective sides 6fhave a geometric
description. For € J we draw the half-line fromx in the direction ofp;. If it intersects
J then the intersection point 8;(x). Leta, d’, b, b’ € J be the points with the vertical or
horizontal tangent lines.

Each of the transformationg; is defined on a proper subarc of the figuratrix. The arc
a'b’ C Jisthe set of covectors for which neither reflection is defined. They are the Legendre
transforms of the exit directions from the wedge. The oppositalate —a’b’ corresponds
to the entrance directions. For convenience, we exigrdesp.R>) to the ard’b (resp.ad)
as the identity map.

A trajectory entering the wedg€ in a directionx hits one of its sides, sal. Upon
reflection, the direction becomé&s x. Then the trajectory hits the sidg and the direction
becomeskoR1x. The process continues until in this sequence of directions we obtain an
exit direction. From that time on, the trajectory continues straight, without encountering the
sides ofC.

Hence, it suffices to prove that there exists a numberl with the following property:
for everyx € ab C J both(R1R2)" (x) and(R2R1)" (x) belong to the ara’’’. Consider the
segmentsd, b'] and [bd] that are symmetric with respect to the origin. Acting by diagonal
matrices, if necessary, we can assume that’] has length one and the slope one. Denote
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by § be the distance between the parallel segmetitifnd [ba]. Note thats depends only
onC and/J.

Suppose thatt € abl and Ri1(x) € bd. Then the orthogonal projection of the
segment f, R1(x)] on the lineab’ has length at least. If x € ba, the same holds for
the segmenty, R2(x)]. Hence we may take for the smallest integer which is greater than
2+1/s. O

6. Mirror equation for Minkowski billiards

We begin by recalling the classicatirror equationof the geometric optics. Let be a
curve in the Euclidean plane which serves as a mirror. Let an infinitesimal beam of light
emanate from a poimt, and reflect in the mirror at a poift. Let the reflected beam focus at
B. The mirror equation is a relation between the focusing distanee$AX| andb = |BX|,
the angle of incidence of the beam (equal to the angle of reflection), and the cunsture
of I' at the pointX,

1 1 2K

a b sing’ ©

Fig. 6 illustrates this equation. Note thatand b in (9) are signed distances. The signs
depend on the side of the mirror where the focusing points are located. Formula (9) has
numerous applications in the Euclidean billiard dynamics. See [9,20,42,43]. In this section
we will extend the mirror equation to Minkowski billiards.

We recall a few basic concepts of the differential geometry in a Minkowski planex Let
be a point of a2 smooth, oriented curvé'. Then there is a unique € (0, co] such that
the indicatrix/, scaled byp, is tangent of order two té" at X. It is called theosculating
indicatrix. The numbep is theMinkowski radius of curvaturef I" at X, and|K| = 1/p is
the absolute value of tHdinkowski curvaturgsee [2,3,37]). Lef(X) be the tangent vector
at X, and letii(X) be the vector going fronX to the center of the osculating indicatrix,

A

Fig. 6. The geometry of the mirror equation.
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i.e., the curvature vector. Then the sign of the Minkowski curvature coincides with the
orientation of the framér(X), 71(X)).

We denote by. (-) the Minkowski norm of a vector. X andY are points in the Minkowski
plane, we use the notatidrn( X — Y') for the Minkowski distance. Choose a parameterization
I'(t), so thatX = I'(1p), and set

F(t)=L(I'(t) — A) + L(I'(t) — B). (10)

The relationF’ (zp) = 0 corresponds to the Minkowski reflection lawAfis a point on the

incoming ray, interpreted as the focusing point of the incoming be&itag) = 0 holds

for any choice ofB in Eq. (10). But the relatior” (19) = 0 will hold for a uniqueB in

Eqg. (10). ThisB is the focusing point of the outgoing beam. Thus the vanishing of the

second derivative for the function defined by Eq. (10) is, in the nutshell, the Minkowski

mirror equation. In order to obtain the Minkowski mirror equation in a form analogous to

the Euclidean formula (9), we will expand the functiBrof Eq. (10) up to the second order.
We introduce the notation that will be used in the Minkowski mirror equationulsetd

v be the Minkowski unit vectors aloryXandBX, and set: = L(A — X), b = L(B — X).

The relationF’(r9) = 0 yields

(dL(u) + dL()(I"(10)) = 0.

This is, of course, the Minkowski reflection law. We regard the second differertial

as a function on the Minkowski plane whose values are the bilinear forms (on the same
plane). Since.(-) is homogeneous of degree £Id-) is homogeneous of degreel. We

have

d2L(u)(I"'(to), I'' (o)) N d2L(u)(I''(to), I'' (o))

., b + (dL(u) + dL()(I"" (10))=0.

(11)

Eqg. (11) does not depend on the parameterizatioff ofMoreover, it does not change if

we replacel” by any other curve that is tangent to it up to the second ord#t. &lfe use

the osculating indicatrix for this purpose. Denote Byand I” the first and the second
derivative vectors, respectively (with respect to some parameterization) of the indicatrix
at the osculating point. Substituting these quantities into (11), we obtain the Minkowski
mirror equation.

Proposition 6.1. Let I" be a curve, serving as a mirror in the Minkowski plane. Let | be
the indicatrix of the metric. Suppose that an infinitesimal beam of light rays emanates from
a point A, reflects in the mirror at a point X, and refocuses at B. Let K be the Minkowski
curvature off™ at X. Then

d2Lw)(I', 1) N d2L (), I

p 5 + K[dL(u) +dL()]I") = 0. (12)

For some applications it is convenient to reformulate the formula above using the square
of the Minkowski norm. SeQ(-) = %L(-)Z. We will use the same interpretations fopd
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and ¢ Q as for the corresponding differentials bf Eq. (12) becomes

d2Q@)(I', I') — (dQ(u)(1"))? N d2o)I', I') — (dQ(v)(I'))?
a b
+ K[dQu) + dQ(v)](I”) =0. (13)

Remark 6.2. Let the metric be Euclidean. Thdrir) = (cost, sint), the first differential
satisfies @ (x) = u, and the second differentiaf@ is the identity. Le® be the angle of
incidence of the infinitesimal beam. Then

dQ)(I") =dQ(v)(I') = coss, dO)(I") =dQ)(I") = —siné.
Substituting this into (13), we obtain the classical mirror equation (9).

By definition, aninvariant circleof a twist map is a homotopically non-trivial topological
circle in the phase cylinder, which is invariant under the map. We refer to [24] for more
information on the subject. Among various results on the non-existence of invariant circles,
the theorem of Mather’s [28] stands out. Mather considers the Euclidean billiard inside a
convex curve of clas€? — the Birkhoff billiard table. He proves that if the curvature of
the table has a zero, then the billiard map has no invariant circles. This is to be contrasted
with the existence theorems for invariant circles, if the curvature is strictly positive [24].

As an application of Eq. (12), we will extend Mather’s theorem to Birkhoff billiards in
a Minkowski plane. LetN be the boundary of a Birkhoff billiard tabl&. An invariant
circle,C, for the billiard map is given by a Lipschitz mapping of the standard circle into the
space@, of oriented lines intersecting the interior &f. This follows from the Birkhoff
theorem — see [10,11,22,24]. The envelgpgf this family of lines is thevilliard caustic
corresponding to the circl€.

Heuristically,y is a caustic for the mirraV means that any light ray, tangengt@t some
point, remains tangent to it (at another point) after the reflectiovi.i@austics tend to have
singularities. Hence, to make the statement above precise, one needs to control them. The
paper [20] contains more information about caustics for Euclidean billiards. The preceding
discussion applies to Birkhoff billiards in a Minkowski plane just as well. The following
lemma, besides being useful for the proof of Theorem 6.4, is of interest by itself.

Lemma 6.3. Let M be a Birkhoff billiard table in a Minkowski plane. Lgtbe a caustic
corresponding to an invariant circle of the corresponding billiard map. Thémncontained
in the interior of M

Proof. Let 0 <t < 1 be a parameter on the bounda¥yof the billiard table. The phase
space? of the billiard map consists of paifs, u) whereu is an oriented inward Minkowski
unit vector at the point € N. Let C C @ be an invariant circle. By Birkhoff's theorem,

C={(tu@),0=<r=<1}

whereu(t) is a Lipschitz function. The billiard map, restricted@ohas the forny (¢, u) =
(s(1), u(s(t))), where the function () is monotonically increasing. Let =t + ¢ > t be
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s(®) s(ty)

Fig. 7. The billiard map on the invariant circle corresponding to a caustic.

a close point. Then the straight lines, corresponding to(r)) € C and(t1, u(t1)) € C
intersect in the interior oM — see Fig. 7. Letting — oo, we obtain the claim. O

Theorem 6.4. Let M be a Birkhoff billiard table in a Minkowski plane. L&t = oM be
the boundary. If the Minkowski curvature of N has a zero, then the Minkowski billiard map
in M does not have invariant circles

Proof. We adapt for the Minkowski geometry the approach of Wojtkowski [43], combined
with the argument of Mather [28]. Assume the opposite, and’lbe an invariant circle.
Lets € N be a point of curvature zero, and [8t v) € C be the corresponding point in the
curve. Seit, u) = T (s, v), whereT is the billiard map. The light ray corresponding to
(t, u) hits N ats, and(s, v) is the reflected ray.

Assume first that is differentiable at. Then the raysz, u) and(s, v) are tangent to
the causticy, corresponding t@’. The two points of tangency, sayand B, form a pair of
focusing points that Proposition 6.1 makes a reference to. We apply the Minkowski mirror
equation (12). Consider the bilinear forMIdx) in the plane. Since the indicatrik is
quadratically convex, . () is positive on the tangent ling, 1. On the other hand, is
homogeneous of degree 1 and satisfies Euler's equatfign)@:) = L. Differentiating
again, we obtain &L (1) (u, -) = 0. Thus the bilinear form%L («) is non-negative, and its
kernel is spanned by the vector

Hence dL(u)(1’, 1"y and #L(v)(I’, I') are positive. By Lemma 6.3, the poirtsand
B are insideM, thusa, b > 0. SinceK = 0, the left-hand side of Eq. (12) is positive. This
is a contradiction.

Suppose now that is not smooth at. SinceC is Lipschitz, the set of non-smooth points
has measure zero. Lé4;, u,) be a sequence of smooth points@fconverging ta(z, u).
Let A,, By, an, by, uy, vy, Ky, €tc., be the corresponding parameters in (12). The terms
2L (u,) (I, I'), dPL(v,) (I, I') and [dL(u,) + dL(v,)] (1) converge to finite limits, as

n’>'n n’>'n
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n — oo. Althougha, andb, may not have limits, they are positive, and bounded away from
infinity, by Lemma 6.3. Sinc&,, — 0, the left-hand sides of the corresponding equations
(12) are positive for sufficiently large. This is again a contradiction. O

7. Duality for Minkowski billiards

Let U be a vector space af dimensions, and le¥ = U* be the dual ofU. Assume
that bothU andV are equipped with Minkowski metrics (which amet necessarily dual
to each other). LeM C U be the figuratrix of the Minkowski metric iv andN C V
be the figuratrix of the Minkowski metric ity. We consideM (resp.N) as the boundary
of a Minkowski billiard table inU (resp.V). We will establish an orbitwise isomorphism
between the two billiard systems.

Let @ and¥ be the respective phase spaces, and letb — @ andT : ¥ — ¥ be
the corresponding Minkowski billiard maps. We will denote by the same symbobth
Legendre transforms. Throughout this sectidnresp.¥) is realized as the space of pairs
(g, p) (resp.(p, q)) whereq € M, p € N are such thaD(p) (resp.D(g)) is an inward
directed vector with the foot point (resp.p). That is,

@ ={(q.p) € M x N|D(p) - D(¢q) =0},
and
¥ ={(p.q) € N x M|D(q) - D(p) <0},
where- is the pairing between vectors and covectors. The transpositipry) = (p, q)

is a natural isomorphism betweenandv.

Theorem 7.1. A sequence

ooy (-2, p-2), (-1, p-1), (g0, Po). (q1, 1), (g2, p2), - -
is an orbit of S if and only if the sequence

. (p=2, —q-1), (p-1, —q0), (po, —q1), (p1, —q2), . ..
is an orbit of T

Proof. In view of the symmetry, it suffices to prove that if the former sequence is a billiard
orbit, then so is the latter. We will use~ v to denote that the two vectors are proportional
with a positive coefficient.

The billiard segmenty; ¢; +1] of the phase poindy;, p;) € @ belongsto the line, spanned
by the vectorD(p;). The billiard reflection take§y; 11, p;) t0 (gi+1, pi+1) € @. We write
the respective conditions as

gi+1—qi ~ D(pi), (14)
and

pi+1— pi ~ —D(qit+1). (15)
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We claim that the phase poifjt;_1, —¢g;) € ¥ travels along the ray spanned by the vector
D(qg;) to the point(p;, —g;), and after the billiard reflection becom@s, —g;+1). This is
tantamount to the conditions,

pi — pi-1~ D(=¢qi), and (—gi+1) — (—qi) = qi — qgi+1 ~ D(=pi).
But the former is (15) and the latter is (14). O

By Theorem 7.1, the Euclidean billiard in a centrally symmetric smooth strictly convex
table is equivalent to a Minkowski billiard in the Euclidean unit ball.

Remark 7.2. Let @*° and¥ ™ be the spaces of billiard orbits, viewed as bi-infinite se-
guences ir® and¥, respectively. Theorem 7.1 provides a transformation,

FuN : % — ¥, FunN(Gi» pi) = (pis —qi+1)
satisfying

Funo S =T o Fun.
The compositionFym o Fun : @° — & is given by

..., (qo, po), (q1, p1), (g2, p2), - ..
— ..., (=q1, —p1), (—q2, —p2), (—q3, —p3), ... .

We will apply the above duality to periodic Minkowski billiard orbits. An orbit
{(gi, pi), —00 < ico} € @ (resp{(pi, qi), —00 < i < oo} € ¥™)

is n-periodic ifg; 1, = qi, pi+n = pi- We setx"® = C,(®) andx"¥ = C,(¥). We view
these spaces as the spaces-of/clic configurations. For instance,

Cu(@) = {(qi> pi) € P|Gi+n = qis Pitn = pi, —00 <1 < 00}.
ThenP,(M) = C,(®) N &> andP,(N) = C,(¥) N &> consist ofn-periodic billiard
orbits in M andN, respectively.

Proposition 7.3. Let the notation be as in Theorefl. We define the functiorg" and
GYN onc,(®) andC,(¥), respectively, by

MG, p) =) (qi+1— ) pi» (16)
i=1
and

G (5.4 =Y (piv1—pi) - 4i- 17)
i=1
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Then

1. The setPM (resp.PY) is contained in the set of critical points of the functiGff
(resp.GM).
2. The isomorphisnFun : C,(®) — C,(¥) sends the functiog)) into GM.

Proof. By symmetry, it suffices to prove the first part of claim 1. Consider first the partial

derivativedGM /ap;. If i 11—qi # 0thendGM /ap; = 0ifand only if the vector® (p;) and

gi+1 — g; are collinear. In particular, this holds for a periodic billiard oi@it p) € C,(®).
Next, one has the identity

GG, p) ==Y _(pi = pi-1) - 4i (18)
i=1

that follows from (16) by a discrete “integration by parts”. This identity implies claim 2 of
the proposition.

To finish the proof, consider the partial derivatii)/@,’l”/aq,- in (16). As before, ifp; —
pi—1 # 0thendGM /aq; = 0 if and only if the vectorsD(¢;) andp; — p;_1 are collinear.
This condition is the Finsler billiard reflection law at poipt and it holds for a periodic
billiard orbit (g, p) € C,(®). O

Remark 7.4. Pushkar' [32,33] used a function similar@’ to study the diameters of an
immersed submanifold/ (e.g., a torus) in Euclidean space.

Remark 7.5. The functionG has other critical points that do not describe genuine billiard
orbits. These “parasite” critical points correspond to the cases whenp; 11 0rg; = g;11
for some index.

The statement below is immediate from Theorem 7.1 and the proof of Proposition 7.3.

Corollary 7.6. The transformatiotfyy induces a length-preserving isomorphism between
the n-periodic orbits of the Minkowski billiards in M and in N

Theorem 7.1 establishes a bijection between Minkowski billiard orbits in “dual tables”.
Specializing it, we will obtain a duality between Minkowski billiard orbits in the same table.
LetA : V — V* be an invertible self-adjoint operator. Suppose tha/) = N.

Corollary 7.7. A sequence

..., (g-1, p-1), (g0, Po), (q1, P1), - - -

is a billiard orbit in M with respect to the Minkowski metric with the figuratrix N if and only
the same holds for the sequence

o (AT (po1), —Aq0)), (A7 (po), —A(qD), (A H(p1), —A(q2)), - - . -
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Proof. The transformatiotFy yields a bijection between Minkowski billiard orbits
andN. The linear isomorphism

AL A VEXV >V xV*

induces a diffeomorphist x N — N x M. It remains to show that it sends Minkowski
billiard orbits to Minkowski billiard orbits. Since linear maps commute with the Legendre
transform, we haveD o A = A1 o D. The Minkowski billiard reflection
conditions,

pi — pi-1~ —D(q;), gi+1—qi ~ D(pi)

are linearly invariant. O

Example 7.8. Veselov [39,40] discovered a special case of Corollary 7.7. He called the
mapping of Corollary 7.7 “the skew hodograph transformation”. In Veselov's dase,
V* is Euclidean spaceyf C V is the ellipsoidA?(g) - ¢ = 1, andN is the unit sphere

p-r=1

Remark 7.9. Continuous counterparts of Theorem 7.1 and Corollary 7.6 have been recently
found by Alvarez — see [4]. Endow! C U (resp.N C V) with the Finsler metric
that is the restriction of the Minkowski metric i (resp.V). One compares the Finsler
geodesic flows o and N. Our description below is somewhat different from that in
[4].

The continuous counterpart of Theorem 7.1 is as follows. The unit covector btidle
of M satisfies

S*M ={(q, p) € M x N|D(q) - D(p) = 0O}.
The geodesic flow o§* M is given, in the natural parameter, by
¢ =D(p), p =-6D(),

whereg is a positive function ofq, p). The transformationg, p) — (p, —q) takesS*M
to $*N, and a geodesic oM into a geodesic oW (but with a non-standard parameteriza-
tion). If the former geodesic is closed then so is the latter, and both have the same Finsler
length.

For the counterpart of Corollary 7.7 note thatlif{M) = N then the transformation

(q,p) — (A"X(p), —A(g))

sends geodesics dd into geodesics oM.
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